A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene.

نویسندگان

  • A D Henk
  • R F Warren
  • R W Innes
چکیده

The RPS5 and RFL1 disease resistance genes of Arabidopsis ecotype Col-0 are oriented in tandem and are separated by 1.4 kb. The Ler-0 ecotype contains RFL1, but lacks RPS5. Sequence analysis of the RPS5 deletion region in Ler-0 revealed the presence of an Ac-like transposable element, which we have designated Tag2. Southern hybridization analysis of six Arabidopsis ecotypes revealed 4-11 Tag2-homologous sequences in each, indicating that this element is ubiquitous in Arabidopsis and has been active in recent evolutionary time. The Tag2 insertion adjacent to RFL1 was unique to the Ler-0 ecotype, however, and was not present in two other ecotypes that lack RPS5. DNA sequence from the latter ecotypes lacked a transposon footprint, suggesting that insertion of Tag2 occurred after the initial deletion of RPS5. The deletion breakpoint contained a 192-bp insertion that displayed hallmarks of a nonhomologous DNA end-joining event. We conclude that loss of RPS5 was caused by a double-strand break and subsequent repair, and cannot be attributed to unequal crossing over between resistance gene homologs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Signature of balancing selection in Arabidopsis.

Natural selection and genetic linkage cause DNA segments to have genealogical histories resembling those of the selected sites. When a polymorphism maintained by selection is old, it will have an island of enhanced sequence variability surrounding it, which represents a detectable "signature of selection." We investigate the structure of single-nucleotide polymorphisms (SNPs) in a 20-kb interva...

متن کامل

The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily.

Specific recognition of Pseudomonas syringae strains that express the avirulence gene avrPphB requires two genes in Arabidopsis, RPS5 and PBS1. Previous work has shown that RPS5 encodes a member of the nucleotide binding site-leucine rich repeat class of plant disease resistance genes. Here we report that PBS1 encodes a putative serine-threonine kinase. Southern blot analysis revealed that the ...

متن کامل

Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis.

The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specif...

متن کامل

A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola.

The avirulence gene avrPph3 from Pseudomonas syringae pv. phaseolicola was tested for its ability to convert virulent P. syringae pv. tomato strain DC3000 to avirulence on Arabidopsis. In F2 plants from a cross between resistant and susceptible ecotypes, the ratio of resistant to susceptible plants was approximately 3:1, indicating that resistance to DC3000(avrPph3) is determined by a single do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 151 4  شماره 

صفحات  -

تاریخ انتشار 1999